Home / Science / A candidate giant planet transiting a white dwarf

A candidate giant planet transiting a white dwarf



  • 1.

    Akeson, R. L. et al. The NASA Exoplanet Archive: Data and tools for exoplanet research. Publish. Astron. Soc. Pacif. 125, 989–999 (2013).

    Google Scholar

  • 2.

    Villaver, E. & Livio, M. The orbital evolution of gaseous giant planets around giant stars. Astrophys. J. Lett. 705, 81–85 (2009).

    Google Scholar

  • 3.

    Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the most beautiful brown dwarf known. Astrophys. J. Lett. 730, 9 (2011).

    Google Scholar

  • 4.

    Marsh, T. R. et al. The planets around NN Serpentis: still there. Mon. Not. R. Astron. Soc. 437, 475–488 (2014).

    Google Scholar

  • 5.

    Jura, M. An asteroid destroyed by the tides around the white dwarf G29–38. Astrophys. J. Lett. 584, 91–94 (2003).

    Google Scholar

  • 6.

    Kilic, M., von Hippel, T., Leggett, S. K. & Winget, D. E. Excess infrared radiation from massive white dwarf DAZ GD 362: a debris disk? Astrophys. J. Lett. 632, 115–118 (2005).

    Google Scholar

  • 7.

    Becklin, E. E. et al. A dusty disk around GD 362, a white dwarf with an exceptionally high abundance of photospheric metal. Astrophys. J. Lett. 632, 119–122 (2005).

    Google Scholar

  • 8.

    Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908 (2006).

    PubMed

    Google Scholar

  • 9.

    Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The impartial frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Mon. Not. R. Astron. Soc. 487, 133–146 (2019).

    Google Scholar

  • 10.

    Vanderburg, A. et al. A minor planet that is disintegrating in transit on a white dwarf. Nature 526, 546–549 (2015).

    PubMed

    Google Scholar

  • 11.

    Manser, C. J. et al. A planetarium orbiting inside the debris disk around a white dwarf star. Science 364, 66–69 (2019).

    PubMed

    Google Scholar

  • 12.

    Vanderbosch, Z. et al. A white dwarf with circumstellar material in transit well outside the Roche limit. Astrophys. J. 897, 171 (2020).

    Google Scholar

  • 13.

    Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556-565 (2002).

    Google Scholar

  • 14.

    Gänsicke, B. T. et al. Accretion of a giant planet to a white dwarf star. Nature 576, 61–64 (2019).

    PubMed

    Google Scholar

  • 15.

    McCook, G. P. & Sion, E. M. A catalog of spectroscopically identified white dwarfs. Astrophys. J. Suppl. Ser. 121, 1–130 (1999).

    Google Scholar

  • 16.

    Nelson, L., Schwab, J., Ristic, M. & Rappaport, S. Minimum orbital period of pre-cataclysmic variables. Astrophys. J. 866, 88 (2018).

    Google Scholar

  • 17.

    Marley, M., Saumon, D., Morley, C. & Fortney, J. Sonora 2018: cloudless, solar composition, solar C / O substellar atmosphere models and spectra (2018); https://doi.org/10.5281/zenodo.1309035

  • 18.

    Spiegel, D. S., Burrows, A. & Milsom, J. A. The mass limit that burns deuterium for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).

    Google Scholar

  • 19.

    Casewell, S. L. et al. WD0837 + 185: the formation and evolution of an extreme binary white dwarf-brown dwarf mass ratio in Praesepe. Astrophys. J. Lett. 759, 34 (2012).

    Google Scholar

  • 20.

    Littlefair, S. P. et al. The substellar companion in the binary of the eclipsing white dwarf SDSS J141126.20 + 200911.1. Mon. Not. R. Astron. Soc. 445, 2106-2115 (2014).

    Google Scholar

  • 21.

    Rappaport, S. et al. WD 1202-024: the shorter period pre-cataclysmic variable. Mon. Not. R. Astron. Soc. 471, 948–961 (2017).

    Google Scholar

  • 22.

    Parsons, S. G. et al. Two white dwarfs in ultrashort tracks with detached, eclipsing, probable substellar companions detected by K2. Mon. Not. R. Astron. Soc. 471, 976–986 (2017).

    Google Scholar

  • 23.

    Paczynski, B. Common envelope tracks. In International Astronomical Union Symp. No. 73: Structure and evolution of closed binary systems (edited by Eggleton, P., Mitton, S. & Whelan, J.) 75-80 (Reidel, 1976).

  • 24.

    Xu, X.-J. & Li, X.-D. On the binding energy parameter λ evolution of the common envelope. Astrophys. J. 716, 114–121 (2010).

    Google Scholar

  • 25.

    Veras, D. & Gänsicke, B. T. Closely spaced planets detectable around white dwarfs through late unpacking. Mon. Not. R. Astron. Soc. 447, 1049-1058 (2015).

    Google Scholar

  • 26.

    Goldreich, P. & Soter, S. Q in the solar system. Icarus 5, 375–389 (1966).

    Google Scholar

  • 27.

    Veras, D. & Fuller, J. Circularization of tides of gas planets orbiting white dwarfs. Mon. Not. R. Astron. Soc. 489, 2941–2953 (2019).

    Google Scholar

  • 28.

    Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69-72 (2014).

    PubMed

    Google Scholar

  • 29.

    Agol, E. Earth transit investigations in the habitable zones of white dwarfs. Astrophys. J. Lett. 731, 31 (2011).

    Google Scholar

  • 30.

    Boss, A. P. et al. Working group on exoplanets. Proc. International Astronomical Union A 26A, 183–186 (2005).

    Google Scholar

  • 31.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrument Syst. 1, 014003 (2014).

    Google Scholar

  • 32.

    Dufour, P. et al. The Montreal White Dwarf Database: A tool for the community. In 20th European White Dwarf Seminar (EuroWD16) (edited by Tremblay, P.-E., Gaensicke, B. & Marsh, T.) 3-8 (2017).

  • 33.

    Stassun. K. G. et al. The TESS Input Catalog and the list of target candidates. Astron. J. 156, 102 (2018); correction 156, 183 (2018).

    Google Scholar

  • 34.

    Gould, A. & Morgan, C. W. Selection of transit target using reduced adequate movements. Astrophys. J. 585, 1056-1061 (2003).

    Google Scholar

  • 35.

    Altmann, M., Roeser, S., Demleitner, M., Bastian, U. & Schilbach, E. Hot Stuff for One Year (HSOY). A catalog of 583 million stars on corrected motion derived from Gaia DR1 and PPMXL. Astron. Astrophys. 600, L4 (2017).

    Google Scholar

  • 36.

    Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalog of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    Google Scholar

  • 37.

    Jenkins, J. M. Overview of the TESS Scientific Pipeline. In AAS / Division for Extreme Solar Systems III (presidents Mayor, M. & Rasio, F.) 106.05 (2015).

  • 38.

    Jenkins, J. M. et al. The TESS Scientific Processing Operations Center. In Proc. SPIE 9913 software and IT infrastructure for astronomy IV (edited by Chiozzi, G. & Guzman, J. C.) 99133E (2016).

  • 39.

    Smith, J. C. et al. Kepler presearch data conditioning II: a Bayesian approach to systematic error correction. Publish. Astron. Soc. Pacif. 124, 1000-1014 (2012).

    Google Scholar

  • 40.

    Stumpe, M. C. et al. Systematic correction of multiscale errors by wavelet-based bandplitting in Kepler data. Publish. Astron. Soc. Pacif. 126, 100 (2014).

    Google Scholar

  • 41.

    Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493-505 (2002).

    Google Scholar

  • 42.

    Evans, D. F. Evidence for unresolved binaries hosting exoplanets in Gaia DR2. Res. Notes AAS 2, 20 (2018).

    Google Scholar

  • 43.

    Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). VIII. A two-planet system in Praesepe from campaign 16 of K2. Astron. J. 156, 195 (2018).

    Google Scholar

  • 44.

    Lindegren, L. Re-normalization of the astrometric Chi-square in Gaia DR2 Gaia technical note n. GAIA-C3-TN-LU-LL-124-01 (Gaia DPAC, 2018).

  • 45.

    Abell, G. O. Globular clusters and planetary nebulae discovered by the National Geographic Society – Palomar Observatory Sky Survey. Publish. Astron. Soc. Pacif. 67, 258-261 (1955).

    Google Scholar

  • 46.

    Rappaport, S. et al. Fragments of asteroids drifting around WD 1145 + 017. Mon. Not. R. Astron. Soc. 458, 3904–3917 (2016).

    Google Scholar

  • 47.

    Narita, N. et al. MuSCAT2: simultaneous four-color camera for the Carlos Sánchez telescope of 1.52 m. J. Astron. Telesc. Instrument Syst. 5, 015001 (2019).

    Google Scholar

  • 48.

    Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A. High speed moderate resolution CCD channel for MMT spectrograph. Publish. Astron. Soc. Pacif. 101, 713 (1989).

    Google Scholar

  • 49.

    Miller, J. S. & Stone, R. P. The double spectrograph of Kast Lick Observatory Technical Report 66 (University of California Observatories / Lick Observatory, 1994).

  • 50.

    Chonis, T. S., Hill, G. J., Lee, H., Tuttle, S. E. & Vattiat, B. L. LRS2: the new low resolution integral field spectrograph for the Hobby-Eberly telescope. In Proc. Astronomical telescopes and SPIE instrumentation Vol. 9147 (edited by Ramsay, S. K., McLean, I. S. & Takami, H.) 91470A (SPIE, 2014).

  • 51.

    Zeimann, G. Panacea source code (accessed 24 June 2020); https://github.com/grzeimann/Panacea (2019).

  • 52.

    Elias, J. H. et al. Design of the Gemini near infrared spectrograph. In Proc. Terrestrial and aerial instrumentation for astronomy (edited by McLean, I. S. & Iye, M.) 62694C (2006).

  • 53.

    Mason, R. E. et al. The spectral properties of the nuclear near infrared of nearby galaxies. Astrophys. J. Suppl. Ser. 217, 13 (2015).

    Google Scholar

  • 54.

    Telting, J. H. et al. FIES: the high resolution fiber-powered Echelle spectrograph at the Nordic Optical Telescope. Astron. Nachr. 335, 41 (2014).

    Google Scholar

  • 55.

    Stempels, E. & Telting, J. FIEStool: Automated Data Reduction for FIber Powered Echelle Spectrograph (FIES) Source code library of astrophysics http://ascl.net/1708.009 (2017).

  • 56.

    Fűrész, G. Design and application of high resolution and multi-object spectrographs: dynamic studies of open clusters. PhD thesis, Univ. Szeged (2008).

  • 57.

    Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012).

    PubMed

    Google Scholar

  • 58.

    Stefanik, R. P., Latham, D. W. & Torres, G. Radial-velocity standard stars. In IAU Colloquium 170: Precise Stellar Radial Velocities Vol. 185 (edited by Hearnshaw, J. B. & Scarfe, C. D.) 354–366 (1999).

  • 59.

    Lépine, S. et al. A spectroscopic catalog of the brightest (J <9) M dwarfs in the northern sky. Astron. J. 145, 102 (2013).

    Google Scholar

  • 60.

    Cubillos, P. et al. WASP-8b: characterization of a fresh and eccentric exoplanet with Spitzer. Astrophys. J. 768, 42 (2013).

    Google Scholar

  • 61.

    Xu, S. & Jura, M. Spitzer observations of white dwarfs: missing planetary debris around DZ stars. Astrophys. J. 745, 88 (2012).

    Google Scholar

  • 62.

    Xu, S. et al. Infrared variability of two dusty white dwarfs. Astrophys. J. 866, 108 (2018).

    Google Scholar

  • 63.

    Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cold white dwarfs. Astrophys. J. 878, 63 (2019).

    Google Scholar

  • 64.

    Blouin, S., Dufour, P. & Allard, N. F. A new generation of fantastic white dwarf atmosphere models. I. Theoretical framework and applications to the stars DZ. Astrophys. J. 863, 184 (2018).

    Google Scholar

  • 65.

    Kowalski, P. M. Infrared absorption of dense helium and its importance in the atmospheres of cold white dwarfs. Astron. Astrophys. 566, L8 (2014).

    Google Scholar

  • 66.

    Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and rays of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).

    Google Scholar

  • 67.

    Eggleton, P. Evolutionary processes in binary and multiple stars (Cambridge Univ. Press, 2006).

  • 68.

    Zapolsky, H. S. & Salpeter, E. E. The mass-radius relationship for low-mass cold spheres. Astrophys. J. 158, 809 (1969).

    Google Scholar

  • 69.

    Mestel, L. On the theory of white dwarfs. I. The energy sources of white dwarfs. Mon. Not. R. Astron. Soc. 112, 583 (1952).

    Google Scholar

  • 70.

    van Horn, H. M. Cooling of white dwarfs. In International Astronomical Union Symp. No. 42: White dwarfs (edited by Luyten, W. J.) 97–115 (Reidel, 1971).

  • 71.

    Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your dwarf M: measuring effective temperature, bolometric brightness, mass and radius. Astrophys. J. 804, 64 (2015); erratum 819, 87 (2016).

    Google Scholar

  • 72.

    Mann, A. W. et al. How to bind your nano M. II. The mass-luminosity-metallicity relationship from 0.075 to 0.70 Solar masses. Astrophys. J. 871, 63 (2019).

    Google Scholar

  • 73.

    Stassun, K. G. et al. The revised TESS input catalog and target candidate list. Astron. J. 158, 138 (2019).

    Google Scholar

  • 74.

    Pearce, L. A. Linear orbits for the impatient (accessed 24 June 2020); https://github.com/logan-pearce/LOFTI (2019).

  • 75.

    Pearce, L. A. et al. Determination of orbital parameters for large binary star systems in the Gaia era. Astrophys. J. 894, 115 (2020).

    Google Scholar

  • 76.

    Blunt, S. et al. Orbits for the impatient: a Bayesian rejection sampling method to rapidly adapt the orbits of long-term exoplanets. Astron. J. 153, 229 (2017).

    Google Scholar

  • 77.

    Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy on heliocentric and barycentric Julian dates. Publish. Astron. Soc. Pacif. 122, 935 (2010).

    Google Scholar

  • 78.

    Mandel, K. & Agol, E. Analytical light curves for planetary transit research. Astrophys. J. Lett. 580, 171–175 (2002).

    Google Scholar

  • 79.

    Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary adaptation suite in IDL. Publish. Astron. Soc. Pacif. 125, 83–112 (2013).

    Google Scholar

  • 80.

    Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb darkening coefficients for eclipsing white dwarfs. Astrophys. J. 766, 3 (2013).

    Google Scholar

  • 81.

    Claret, A. et al. Severity and limb darkening coefficients for compact stars: DA, DB and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).

    Google Scholar

  • 82.

    Claret, A. & Bloemen, S. Severity and limb darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    Google Scholar

  • 83.

    Seager, S. & Mallén-Ornelas, G. A unique solution of the planet and star parameters from an exoplanet transit light curve. Astrophys. J. 585, 1038-1055 (2003).

    Google Scholar

  • 84.

    Lucy, L. B. & Sweeney, M. A. Spectroscopic tracks with circular orbits. Astron. J. 76, 544–556 (1971).

    Google Scholar

  • 85.

    Goodman, J. & Weare, J. Sampler ensembles with affine invariance. Comm. App. Mathematics. Comp. Ski. 5, 65–80 (2010).

    MathSciNet
    MATHEMATICS

    Google Scholar

  • 86.

    Kopal, Z. Close binary systems (Chapman & Hall, 1959).

  • 87.

    Kipping, D. M. Efficient and non-informative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    Google Scholar

  • 88.

    Saumon, D. & Marley, M. S. The evolution of dwarfs L and T in color-magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).

    Google Scholar

  • 89.

    Nelson, L. A., Rappaport, S. A. & Joss, P. C. On the nature of Van Biesbroeck’s companion 8. Nature 316, 42–44 (1985).

    Google Scholar

  • 90.

    Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and brown dwarf formation. In Protostars and planets VI (edited by Beuther, H. et al.) 619–642 (Univ. Arizona Press, 2014).

  • 91.

    Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-wide eccentricity distributions of exoplanets with brown dwarf images and companions: dynamic evidence for distinct formation channels. Astron. J. 159, 63 (2020).

    Google Scholar

  • ninety two.

    Phillips, M. W. et al. A new set of atmosphere and evolution models for fantastic T-Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).

    Google Scholar

  • 93.

    Miles, B. E. et al. Observations on the chemistry of CO imbalance in colder brown dwarfs. Astron. J. 160, 63 (2020).

    Google Scholar

  • 94.

    Morley, C. V. et al. An L-band spectrum of the coolest brown dwarf. Astrophys. J. 858, 97 (2018).

    Google Scholar

  • 95.

    Morley, C. V. et al. Water clouds in Y dwarfs and exoplanets. Astrophys. J. 787, 78 (2014).

    Google Scholar

  • 96.

    Shappee, B. J. et al. The man behind the scenes: X-rays guide UVs through NIR variability in the 2013 active galactic core explosion in NGC 2617. Astrophys. J. 788, 48 (2014).

    Google Scholar

  • 97.

    Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publish. Astron. Soc. Pacif. 129, 104502 (2017).

    Google Scholar

  • 98.

    Butters, O. W. et al. WASP’s first public data release. Astron. Astrophys. 520, L10 (2010).

    Google Scholar

  • 99.

    Gizis, J. E. M-subdwarfs: spectroscopic classification and metallicity scale. Astron. J. 113, 806-822 (1997).

    Google Scholar

  • 100.

    Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars: dwarf (dM), subnane (sdM), extreme subnane (esdM) and ultra-octane (usdM). Astrophys. J. 669, 1235–1247 (2007).

    Google Scholar

  • 101.

    Mann, AW, Brewer, JM, Gaidos, E., Lépine, S. & Hilton, EJ Prospecting in late type dwarfs: a calibration of the infrared and visible spectroscopic metallicities of late K and M dwarfs extending over 1.5 dex . Astron. J. 145, 52 (2013).

    Google Scholar

  • 102.

    Newton, E. R. et al. The emission of Hα from nearby M dwarfs and its relationship with stellar rotation. Astrophys. J. 834, 85 (2017).

    Google Scholar

  • 103.

    West, A. A. et al. Sloan Digital Sky Survey data releases 7 M nano spectroscopic catalog. The data. Astron. J. 141, 97 (2011).

    Google Scholar

  • 104.

    Coşkunoğlu, B. et al. Local stellar kinematics from RAVE data – I. Rest local standard. Mon. Not. R. Astron. Soc. 412, 1237–1245 (2011).

    Google Scholar

  • 105.

    Bensby, T., Feltzing, S. & Oey, M. S. Exploring the stellar disk of the Milky Way. A detailed study of the elemental abundance of 714 F and G dwarf stars in the solar quarter. Astron. Astrophys. 562, A71 (2014).

    Google Scholar

  • 106.

    Carrillo, A., Hawkins, K., Bowler, B. P., Cochran, W. & Vanderburg, A. Know your star, know your planet: chemo-kinematically characterize TESS targets. Mon. Not. R. Astron. Soc. 491, 4365–4381 (2020).

    Google Scholar

  • 107.

    Kilic, M. et al. The ages of the thin disc, thick disc and halo of nearby white dwarfs. Astrophys. J. 837, 162 (2017).

    Google Scholar

  • 108.

    Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D. & Gómez, A. The age structure of stellar populations in the solar vicinity. Clues to a two-stage formation history of the Milky Way disk. Astron. Astrophys. 560, A109 (2013).

    Google Scholar

  • 109.

    Xiang, M. et al. The ages and masses of one million secondary and subgiant stars of the main sequence of the galactic disc from LAMOST Galactic Spectroscopic Surveys. Astrophys. J. Suppl. Ser. 232, 2 (2017).

    Google Scholar

  • 110.

    Sharma, S. et al. The K2-HERMES survey: age and metallicity of the thick disc. Mon. Not. R. Astron. Soc. 490, 5335-5352 (2019).

    Google Scholar

  • 111.

    Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355-360 (1984).

    Google Scholar

  • 112.

    Pfahl, E., Rappaport, S. & Podsiadlowski, P. The galactic population of low and intermediate mass X-ray binaries. Astrophys. J. 597, 1036-1048 (2003).

    Google Scholar

  • 113.

    Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Binary post-common-envelope from SDSS. IX: Limit the efficiency of the common envelope. Astron. Astrophys. 520, A86 (2010).

    Google Scholar

  • 114.

    De Marco, O. et al. On the α formalism for the common interaction of the envelope. Mon. Not. R. Astron. Soc. 411, 2277–2292 (2011).

    Google Scholar

  • 115.

    Camacho, J. et al. Monte Carlo simulations of tracks of the common post-envelope white dwarf + main sequence: comparison with the sample observed by SDSS DR7. Astron. Astrophys. 566, A86 (2014).

    Google Scholar

  • 116.

    Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Double core evolution. I. A 16 M.
    star with 1 M.
    companion neutron star. Astrophys. J. 222, 269-280 (1978).

    Google Scholar

  • 117.

    Taam, R. E. & Bodenheimer, P. The evolution of the common envelope of massive stars. In Recycled X-ray binaries and pulsars: Proc. NATO Advanced Research Seminar on X-ray binaries and the formation of binary and millisecond radio pulsars (edited by van den Heuvel, E. P. and Rappaport, S. A.) 281–291 (Springer Dordrecht, 1992).

  • 118.

    Tauris, T. M. & Dewi, J. D. M. On the binding energy parameter of the evolution of the common envelope. Dependence on the definition of the boundary of the stellar core during the incoming spiral. Astron. Astrophys. 369, 170–173 (2001).

    Google Scholar

  • 119.

    Rappaport, S. et al. Discovery of two new thermally swollen low-mass white dwarfs between Kepler’s tracks. Astrophys. J. 803, 82 (2015).

    Google Scholar

  • 120.

    Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar scale models. Astrophys. J. 823, 102 (2016).

    Google Scholar

  • 121.

    Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relationship between white dwarf mass and orbital period in wide binary radio pulsars. Mon. Not. R. Astron. Soc. 273, 731–741 (1995).

    Google Scholar

  • 122.

    Kalomeni, B. et al. Evolution of cataclysmic variables and related tracks containing a white dwarf. Astrophys. J. 833, 83 (2016).

    Google Scholar

  • 123.

    Passy, ​​J.-C., Mac Low, M.-M. & De Marco, O. On the survival of brown dwarfs and the planets swallowed by their gigantic host star. Astrophys. J. Lett. 759, 30 (2012).

    Google Scholar

  • 124.

    Bear, E. & Soker, N. Evaporation of Jupiter-like planets orbiting stars of the extreme horizontal branch. Mon. Not. R. Astron. Soc. 414, 1788–1792 (2011).

    Google Scholar

  • 125.

    Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S. & Lagos, F. Cold giant planets evaporated by hot white dwarfs. Astrophys. J. 887, L4 (2019).

    Google Scholar

  • 126.

    Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    MathSciNet

    Google Scholar

  • 127.

    Lidov, M. L. The evolution of the orbits of the artificial satellites of the planets under the action of the gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).

    Google Scholar

  • 128.

    Stephan, A. P., Naoz, S. & Zuckerman, B. White dwarf iceberg launch. Astrophys. J. Lett. 844, 16 (2017).

    Google Scholar

  • 129.

    Chambers, J. E. A hybrid symplectic supplement that allows for close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Google Scholar

  • 130.

    Veras, D. & Fuller, J. The dynamic history of the ice giant planet evaporating or disintegrating around the white dwarf WD J0914 + 1914. Mon. Not. R. Astron. Soc. 492, 6059–6066 (2019).

    Google Scholar

  • 131.

    Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

    PubMed

    Google Scholar

  • 132.

    Kozakis, T., Kaltenegger, L. & Hoard, D. W. UV surface environments and atmospheres of Earth-like planets orbiting white dwarfs. Astrophys. J. 862, 69 (2018).

    Google Scholar

  • 133.

    Bonsor, A. & Veras, D. A broad binary trigger for white dwarf pollution. Mon. Not. R. Astron. Soc. 454, 53–63 (2015).

    Google Scholar

  • 134.

    Chang, Y. C. A study of the orientation of the orbital planes of 16 visual binaries having certain inclinations. Astron. J. 40, 11-15 (1929).

    Google Scholar

  • 135.

    Agati, J. L. et al. Are the orbital poles of binary stars in the solar neighborhood anisotropically distributed? Astron. Astrophys. 574, A6 (2015).

    Google Scholar

  • 136.

    Heintz, W. D. A statistical study of binary stars. J. Roy. Astron. Soc. May. 63, 275 (1969).

    Google Scholar

  • 137.

    Adams, F. C. & Bloch, A. M. Evolution of planetary orbits with stellar mass loss and tidal dissipation. Astrophys. J. 777, L30 (2013).

    Google Scholar

  • 138.

    Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Decay of tides of nearby planetary orbits. Astrophys. J. 470, 1187 (1996).

    Google Scholar

  • 139.

    Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Release of hexalunas in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217-231 (2016).

    Google Scholar

  • 140.

    Bromley, B. C., Kenyon, S. J., Geller, M. J. & Brown, W. R. Binary interruption from huge black holes: hyper-velocity stars, S stars and tidal disruption events. Astrophys. J. 749, L42 (2012).

    Google Scholar

  • 141.

    Faber, J. A., Rasio, F. A. & Willems, B. Tidal interactions and interruptions of giant planets on highly eccentric orbits. Icarus 175, 248-262 (2005).

    Google Scholar

  • 142.

    Mainetti, D. et al. The fine line between full and partial tide outages. Astron. Astrophys. 600, A124 (2017).

    Google Scholar

  • 143.

    Kreidberg, L. Measurements of the atmosphere of exoplanets by transmission spectroscopy and other combined light observations of the planet’s stars. In Handbook of exoplanets (edited by Deeg, H. J. & Belmonte, J. A.) 2083–2105 (2018).

  • 144.

    Stevenson, K. B. Quantification and prediction of the presence of clouds in the atmospheres of exoplanets. Astrophys. J. 817, L16 (2016).

    Google Scholar

  • 145.

    Loeb, A. & Gaudi, B. S. Periodic variability of the flux of stars due to the reflected Doppler effect induced by planetary companions. Astrophys. J. Lett. 588, 117–120 (2003).

    Google Scholar

  • 146.

    van Kerkwijk, M. H. et al. Observations of Doppler boosting in Kepler light curves. Astrophys. J. 715, 51–58 (2010).

    Google Scholar

  • 147.

    Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249-330 (2014).

    Google Scholar

  • 148.

    Chambers, K. C. et al. Pan-STARRS1 polls. Preprint at: https://www.arxiv.org/abs/1612.05560 (2016).

  • 149.

    Skrutskie, M. F. et al. The two-micron All Sky survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Google Scholar

  • 150.

    Cutri, R. M. et al. VizieR online data catalog: AllWISE data release (Cutri + 2013). VizieR online data catalog II / 328 (accessed on 5 October 2019); http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/328


  • Source link