Home / Science / Superconductivity at room temperature in a carbonaceous sulfur hydride

Superconductivity at room temperature in a carbonaceous sulfur hydride



  • 1.

    Onnes, H. K. The resistance of pure mercury to helium temperatures. Commun. Phys. Laboratory. Univ. Leiden 12, 1 (1911).

    Google Scholar

  • 2.

    Ginzburg, V. L. Nobel Lecture: on superconductivity and superfluidity (what I have and have not been able to do) and on the “physical minimum” at the beginning of the 21st century. Rev. Mod. Phys. 76, 981–998 (2004).

    ADS
    CAS

    Google Scholar

  • 3.

    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvins at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    ADS
    CAS

    Google Scholar

  • 4.

    Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride at high pressures. Nature 569, 528-531 (2019).

    ADS
    CAS

    Google Scholar

  • 5.

    Somayazulu, M. et al. Superconductivity tests greater than 260 K in the lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    ADS
    CAS

    Google Scholar

  • 6.

    Duan, D. et al. Pressure-induced metallization of dense material (H.2S)2H.2 with highT.
    c superconductivity. Sci. Representative. 4, 6968 (2014).

    CAS

    Google Scholar

  • 7.

    Strobel, T.A., Ganesh, P., Somayazulu, M., Kent, P. R. C. & Hemley, R. J. Novel Cooperative interactions and structural ordering in H2S – H2. Phys. Rev. Lett. 107, 255503 (2011).

    ADS

    Google Scholar

  • 8.

    Bi, T., Zarifi, N., Terpstra, T. & Zurek, E. The search for superconductivity in high pressure hydrides. Reference module in chemistry, molecular sciences and chemical engineering https://doi.org/10.1016/B978-0-12-409547-2.11435-0 (Elsevier, 2019).

  • 9.

    Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Routing to a superconducting phase above room temperature in high pressure electron-doped hydride compounds. Phys. Rev. Lett. 123, 097001 (2019).

    ADS
    CAS

    Google Scholar

  • 10.

    Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Nodded. Rev. Condens. Physical matter. 11, 57–76 (2020).

    CAS

    Google Scholar

  • 11.

    Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. Superconductivity in oxygen. Nature 393, 767–769 (1998).

    ADS
    CAS

    Google Scholar

  • 12.

    Struzhkin, V. V., Hemley, R. J., Mao, H. & Timofeev, Y. A. Superconductivity at 10-17 K in compressed sulfur. Nature 390, 382–384 (1997).

    ADS

    Google Scholar

  • 13.

    Dias, R. P. et al. Superconductivity in highly disordered dense carbon disulfide. Proc. Natl Acad. Sci. United States of America 110, 11720–11724 (2013).

    ADS
    CAS

    Google Scholar

  • 14.

    Kim, D.Y., Scheicher, R. H., Mao, H., Kang, T. W. & Ahuja, R. General trend for pressurized superconducting hydrogen dense materials. Proc. Natl Acad. Sci. United States of America 107, 2793-2796 (2010).

    ADS
    CAS

    Google Scholar

  • 15.

    Tanaka, K., Tse, J. S. & Liu, H. Electron-phonon coupling mechanisms for high pressure hydrogen-rich metals. Phys. Rev. B 96, 100502 (2017).

    ADS

    Google Scholar

  • 16.

    Ashcroft, N. W. Metallic hydrogen: a high temperature superconductor? Phys. Rev. Lett. 21, 1748-1749 (1968).

    ADS
    CAS

    Google Scholar

  • 17.

    Dias, R. P. & Silvera, I. F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).

    ADS
    CAS

    Google Scholar

  • 18.

    Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Semimetallic molecular hydrogen at pressure greater than 350 GPa. Nat. Phys. 15, 1246–1249 (2019).

    CAS

    Google Scholar

  • 19.

    Zaghoo, M., Salamat, A. & Silvera, I. F. Evidence of a phase transition of the first order to metallic hydrogen. Phys. Rev. B 93, 155128 (2016).

    ADS

    Google Scholar

  • 20.

    Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Clathrate calcium hydride similar to superconductive sodalite at high pressures. Proc. Natl Acad. Sci. United States of America 109, 6463–6466 (2012).

    ADS
    CAS

    Google Scholar

  • 21.

    Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. High potential-T.
    c superconducting hydrides of lanthanum and yttrium at high pressure. Proc. Natl Acad. Sci. United States of America 114, 6990–6995 (2017).

    ADS
    CAS

    Google Scholar

  • 22.

    Peng, F. et al. Structures of hydrogen clathrate in rare earth hydrides at high pressures: possible path to superconductivity at room temperature. Phys. Rev. Lett. 119, 107001 (2017).

    ADS

    Google Scholar

  • 23.

    Errea, I. et al. High-pressure hydrogen sulphide from first principles: a strongly anharmonic phononic superconductor. Phys. Rev. Lett. 114, 157004 (2015).

    ADS

    Google Scholar

  • 24.

    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    ADS
    CAS

    Google Scholar

  • 25.

    Cui, W. et al. Route to high Tc superconductivity via CH4-intercalate H3S perovskite hydride. Phys. Rev. B 101, 134504 (2020).

    ADS
    CAS

    Google Scholar

  • 26.

    Sun, Y. et al. Computational discovery of a dynamically stable cubic SH3-as a high temperature superconductor at 100 GPa via CH4 intercalation. Phys. Rev. B 101, 174102 (2020).

    ADS
    CAS

    Google Scholar

  • 27.

    Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

    CAS

    Google Scholar

  • 28.

    Poco, W. A. ​​Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416 – A1424 (1964).

    ADS

    Google Scholar

  • 29.

    Ginzburg, V. L. On surface superconductivity. Phys. Lett. 13, 101-102 (1964).

    ADS
    CAS

    Google Scholar

  • 30.

    Akahama, Y. & Kawamura, H. Raman caliber pressure calibration with diamond anvil at 310 GPa. J. Appl. Phys. 100, 043516 (2006).

    ADS

    Google Scholar

  • 31.

    Hsieh, S. et al. Imaging stress and high-pressure magnetism using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

    ADS
    CAS

    Google Scholar

  • 32.

    Lesik, M. et al. Magnetic measurements on micrometer-sized samples at high pressure using designed NV centers. Science 366, 1359–1362 (2019).

    ADS
    CAS

    Google Scholar

  • 33.

    Yip, K. Y. et al. Measurement of the magnetic field structure in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).

    ADS
    CAS

    Google Scholar

  • 34.

    Mozaffari, S. et al. Superconducting phase diagram of H.3S under high magnetic fields. Nat. Commun. 10, 2522 (2019).

    ADS

    Google Scholar

  • 35.

    Eckert, B. & Schumacher, R., Jodl, H. J. & Foggi, P. Pressure-induced phase transitions and photos in sulfur studied by Raman spectroscopy. High pressure. Res. 17, 113-146 (2000).

    ADS

    Google Scholar

  • 36.

    Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High pressure compounds in methane-hydrogen mixtures. Science 271, 1400-1402 (1996).

    ADS
    CAS

    Google Scholar

  • 37.

    Kearney, J. S. C. et al. Pressure adjustable band gap in the visible range in ionic spinel tin nitride. Angew. Chem. Int. Ed. 57, 11623–11628 (2018).

    CAS

    Google Scholar

  • 38.

    Spiekermann, G. et al. Persistent octahedral coordination in amorphous GeO2 up to 100 GPa from K.β″ X-ray emission spectroscopy. Phys. Rev. X 9, 011025 (2019).

    CAS

    Google Scholar

  • 39.

    Dias, R. P., Noked, O. & Silvera, I. F. Quantum phase transition in solid hydrogen under high pressure. Phys. Rev. B 100, 184112 (2019).

    ADS
    CAS

    Google Scholar

  • 40.

    Dias, R. P., Noked, O. & Silvera, I. F. New phases and dissociation-recombination of hydrogen deuteride at 3.4 Mbar. Phys. Rev. Lett. 116, 145501 (2016).

    ADS

    Google Scholar

  • 41.

    Frank, R. B. in Methodology of the Mössbauer effects 151-180 (Springer, 1976).

  • 42.

    Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of pressure addictions of T.
    c in the trivalent d-electronic superconductors Sc, Y, La and Lu up to megabar pressures. Phys. Rev. B 78, 064519 (2008).

    ADS

    Google Scholar

  • 43.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 – B871 (1964).

    ADS
    MathSciNet

    Google Scholar

  • 44.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965).

    ADS
    MathSciNet

    Google Scholar

  • 45.

    Blöchl, P. E. Projector Augmented Wave Method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS

    Google Scholar

  • 46.

    Lejaeghere, K. et al. Reproducibility in the calculations of the functional theory of the density of solids. Science 351, aad3000 (2016).

    Google Scholar

  • 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. The generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS
    CAS

    Google Scholar

  • 48.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of the functional density dispersion correction (DFT-D) for the 94 H-Pu elements. J. Chem. Phys. 132, 154104 (2010).

    ADS

    Google Scholar

  • 49.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in the theory of the dispersion-corrected density functional. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS

    Google Scholar

  • 50.

    Froyen, S. & Cohen, M. Structural properties of NaCl and KCl under pressure. J. Phys. C. 19, 2623-2632 (1986).

    ADS
    CAS

    Google Scholar

  • 51.

    Dacosta, P. G., Nielsen, O. H. & Kunc, K. Stress theorem in the determination of the static equilibrium with the density functional method. J. Phys. C. 19, 3163-3172 (1986).

    ADS

    Google Scholar

  • 52.

    Vanderbilt, D. Absence of large compressive stresses on Si (111). Phys. Rev. Lett. 59, 1456–1459 (1987).

    ADS
    CAS

    Google Scholar

  • 53.

    Francis, G. P. & Payne, M. C. Finite bases fix the corrections to the calculations of the pseudopotential of the total energy. J. Phys. Condens. It matters 2, 4395-4404 (1990).

    ADS

    Google Scholar

  • 54.

    Hazen, R. M., Mao, H. K., Finger, L. W. & Bell, P. M. Structure and compression of crystalline methane at high pressure and room temperature. Appl. Phys. Lett. 37, 288-289 (1980).

    ADS
    CAS

    Google Scholar

  • 55.

    Zhou, D. et al. Elastic properties of monocrystalline hydrogen sulfide: a high pressure-temperature Brillouin diffusion study. J. Appl. Phys. 124, 125901 (2018).

    ADS

    Google Scholar

  • 56.

    Pratesi, G., Ulivi, L., Barocchi, F., Loubeyre, P. & Le Toullec, R. Hyperacoustic velocity of fluid hydrogen at high pressure. J. Phys. Condens. It matters 9, 10059-10064 (1997).

    ADS
    CAS

    Google Scholar

  • 57.

    Darkrim, F. & Levesque, D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 109, 4981–4984 (1998).

    ADS
    CAS

    Google Scholar

  • 58.

    Somayazulu, M. S., Finger, L. W., Hemley, R. J. & Mao, H. K. High pressure compounds in methane-hydrogen mixtures. Science 271, 1400-1402 (1996).

    ADS
    CAS

    Google Scholar

  • 59.

    Pace, E. J. et al. Properties and phase diagram of (H.2S)2H.2. Phys. Rev. B 101, 174511 (2020).

    ADS
    CAS

    Google Scholar

  • 60.

    Das, A. et al. The H2Dimer S is bound to hydrogen: direct confirmation by microwave spectroscopy. Angew. Chem. Int. Ed. 57, 15199-15203 (2018).

    CAS

    Google Scholar

  • 61.

    Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    ADS
    CAS

    Google Scholar


  • Source link